26 research outputs found

    Climate policy design : interactions among carbon dioxide, methane, and urban air pollution constraints

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 176-189).Limiting anthropogenic climate change over the next century will require controlling multiple substances. The Kyoto Protocol structure constrains the major greenhouse gases and allows trading among them, but there exist other possible regime architectures which may be more efficient. Tradeoffs between the market efficiency of all-inclusive policies and the benefits of policies targeted to the unique characteristics of each substance are investigated using an integrated assessment approach, using the MIT Emissions Prediction and Policy Analysis model, the Integrated Global Systems Model, and political analysis methods. The thesis explores three cases. The first case addresses stabilization, the ultimate objective of Article 2 of the UN Framework Convention on Climate Change. We highlight the implications of imprecision in the definition of stabilization, the importance of non-CO2 substances, and the problems of excessive focus on long-term targets. The results of the stabilization analysis suggest that methane reduction will be especially valuable because of its importance in low-cost mitigation policies that are effective on timescales up to three centuries. Therefore in the second case we examine methane, demonstrating that methane constraints alone can account for a 15% reduction in temperature rise over the 21st century.(cont.) In contrast to conventional wisdom, we show that Global Warming Potential based trading between methane reductions and fossil CO2 reductions is flawed because of the differences in their atmospheric characteristics, the uncertainty in methane inventories, the negative interactions of CO2 constraints with underlying taxes, and higher political barriers to constraining CO2. The third case examines the benefits of increased policy coordination between air pollution constraints and climate policies. We calculate the direct effects of air pollution constraints to be less than 8% of temperature rise over the century, but ancillary reductions of GHGs lead to an additional 17% decrease. Furthermore, current policies have not had success coordinating air pollution constraints and CO2 constraints, potentially leading to a 20% welfare cost penalty resulting from separate implementation. Our results lead us to recommend enacting near term multinational CH4 constraints independently from CO2 policies as well as supporting air pollution policies in developing nations that include an emphasis on climate friendly projects.by Marcus C. Sarofim.Ph.D

    The Role of Non-CO2 Greenhouse Gases in Climate Policy: Analysis Using the MIT IGSM

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).First steps toward a broad climate agreement, such as the Kyoto Protocol, have focused attention on agreement with less than global geographic coverage. We consider instead a policy that is less comprehensive in term of greenhouse gases (GHGs), including only the non-CO2 GHGs, but is geographically comprehensive. Abating non-CO2 GHGs may be seen as less of a threat to economic development and therefore it may be possible to involve developing countries in such a policy who have thus far resisted limits on CO2 emissions. The policy we consider involves a GHG price of about $15 per ton carbon-equivalent (tce) levied only on the non-CO2 GHGs and held at that level through the century. We estimate that such a policy would reduce the global mean surface temperature in 2100 by about 0.57 degrees C; application of this policy to methane alone would achieve a reduction of 0.3 to 0.4 degrees C. We estimate the Kyoto Protocol in its current form would achieve a 0.30 degrees C reduction in 2100 if all Annex B Parties except the US maintained it as is through the century. Furthermore, we estimate the costs of the non-CO2 policies to be a small fraction of the Kyoto restriction. Whether as a next step to expand the Kyoto Protocol, or as a separate initiative running parallel to it, the world could make substantial progress on limiting climate change by pursuing an agreement to abate the non-CO2 GHGs. The results suggest that it would be useful to proceed on global abatement of non-CO2 GHGs so that lack of progress on negotiations to limit CO2 does not allow these abatement opportunities to slip away

    The Influence on Climate Change of Differing Scenarios for Future Development Analyzed Using the MIT Integrated Global System Model

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).A wide variety of scenarios for future development have played significant roles in climate policy discussions. This paper presents projections of greenhouse gas (GHG) concentrations, sea level rise due to thermal expansion and glacial melt, oceanic acidity, and global mean temperature increases computed with the MIT Integrated Global Systems Model (IGSM) using scenarios for 21st century emissions developed by three different groups: intergovernmental (represented by the Intergovernmental Panel on Climate Change), government (represented by the U.S. government Climate Change Science Program) and industry (represented by Royal Dutch Shell plc). In all these scenarios the climate system undergoes substantial changes. By 2100, the CO2 concentration ranges from 470 to 1020 ppm compared to a 2000 level of 365 ppm, the CO2-equivalent concentration of all greenhouse gases ranges from 550 to 1780 ppm in comparison to a 2000 level of 415 ppm, sea level rises by 24 to 56 cm relative to 2000 due to thermal expansion and glacial melt, oceanic acidity changes from a current pH of around 8 to a range from 7.63 to 7.91. The global mean temperature increases by 1.8 to 7.0 degrees C relative to 2000.The IGSM model used here is supported by the U.S. Department of Energy, U.S. Environmental Protection Agency, U.S. National Science Foundation, U.S. National Aeronautics and Space Administration, U.S. National Oceanographic and Atmospheric Administration and the Industry and Foundation Sponsors of the MIT Joint Program on the Science and Policy of Global Change

    Stabilization and Global Climate Policy

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).Academic and political debates over long-run climate policy often invoke “stabilization” of atmospheric concentrations of greenhouse gases (GHGs), but only rarely are non-CO2 greenhouse gases addressed explicitly. Even though the majority of short-term climate policies propose trading between gases on a global warming potential (GWP) basis, discussions of whether CO2 concentrations should be 450, 550, 650, or perhaps as much as 750 ppm leave unstated whether there should be no additional forcing from other GHGs beyond current levels or whether separate concentration targets should be established for each GHG. Here we use an integrated modeling framework to examine multi-gas stabilization in terms of temperature, economic costs, carbon uptake, and other important consequences. We show that there are significant differences in both costs and climate impacts between different "GWP equivalent" policies and demonstrate the importance of non-CO2 GHG reduction on timescales of up to several centuries.Sarofim was supported in part by a Martin Sustainability Fellowshi

    Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    Full text link
    The Arctic temperature response to emissions of aerosols—specifically black carbon (BC), organic carbon (OC), and sulfate—depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present‐day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present‐day emissions from the domestic and transportation sectors generate the majority of present‐day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long‐term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short‐term, aerosol‐induced Arctic warming. A properly phased approach that targets BC‐rich emissions from the transportation sector as well as the domestic sectors in key regions—while simultaneously working toward longer‐term goals of CO2 mitigation—could potentially avoid some amount of short‐term Arctic warming.Key PointsReductions in anthropogenic black carbon emissions alone could slow Arctic warming by mid‐centuryArctic cooling from reduced BC is more than offset by warming from reduced SO2 across all of the RCP mitigation scenariosDomestic and transport emissions from Asia hold the greatest potential for reducing Arctic warming from anthropogenic aerosolsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133610/1/eft2124_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133610/2/eft2124.pd

    Effects of Air Pollution Control on Climate

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).Urban air pollution and climate are closely connected due to shared generating processes (e.g., combustion) for emissions of the driving gases and aerosols. They are also connected because the atmospheric lifecycles of common air pollutants such as CO, NOx and VOCs, and of the climatically important methane gas (CH4) and sulfate aerosols, both involve the fast photochemistry of the hydroxyl free radical (OH). Thus policies designed to address air pollution may impact climate and vice versa. We present calculations using a model coupling economics, atmospheric chemistry, climate and ecosystems to illustrate some effects of air pollution policy alone on global warming. We consider caps on emissions of NOx, CO, volatile organic carbon, and SOx both individually and combined in two ways. These caps can lower ozone causing less warming, lower sulfate aerosols yielding more warming, lower OH and thus increase CH4 giving more warming, and finally, allow more carbon uptake by ecosystems leading to less warming. Overall, these effects significantly offset each other suggesting that air pollution policy has a relatively small net effect on the global mean surface temperature and sea level rise. However, our study does not account for the effects of air pollution policies on overall demand for fossil fuels and on the choice of fuels (coal, oil, gas), nor have we considered the effects of caps on black carbon or organic carbon aerosols on climate. These effects, if included, could lead to more substantial impacts of capping pollutant emissions on global temperature and sea level than concluded here. Caps on aerosols in general could also yield impacts on other important aspects of climate beyond those addressed here, such as the regional patterns of cloudiness and precipitation.This research was supported by the U.S Department of Energy, U.S. National Science Foundation, and the Industry Sponsors of the MIT Joint Program on the Science and Policy of Global Change: Alstom Power (France), American Electric Power (USA), BP p.l.c. (UK/USA), ChevronTexaco Corporation (USA), DaimlerChrysler AG (Germany), Duke Energy (USA), J-Power (Electric Power Development Co., Ltd.) (Japan), Electric Power Research Institute (USA), Electricité de France, ExxonMobil Corporation (USA), Ford Motor Company (USA), General Motors (USA), Mirant (USA), Murphy Oil Corporation (USA), Oglethorpe Power Corporation (USA), RWE/Rheinbraun (Germany), Shell International Petroleum (Netherlands/UK), Statoil (Norway), Tennessee Valley Authority (USA), Tokyo Electric Power Company (Japan), TotalFinaElf (France), Vetlesen Foundation (USA)

    Analysis of Climate Policy Targets under Uncertainty

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).Although policymaking in response to the climate change is essentially a challenge of risk management, most studies of the relation of emissions targets to desired climate outcomes are either deterministic or subject to a limited representation of the underlying uncertainties. Monte Carlo simulation, applied to the MIT Integrated Global System Model (an integrated economic and earth system model of intermediate complexity), is used to analyze the uncertain outcomes that flow from a set of century-scale emissions targets developed originally for a study by the U.S. Climate Change Science Program. Results are shown for atmospheric concentrations, radiative forcing, sea ice cover and temperature change, along with estimates of the odds of achieving particular target levels, and for the global costs of the associated mitigation policy. Comparison with other studies of climate targets are presented as evidence of the value, in understanding the climate challenge, of more complete analysis of uncertainties in human emissions and climate system response.This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors

    Past and Future Effects of Ozone on Net Primary Production and Carbon Sequestration Using a Global Biogeochemical Model

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. Simulations with the Terrestrial Ecosystem Model (TEM) for the historical period (1860-1995) show the largest damages occur in the eastern U.S., Europe, and eastern China, with reductions in Net Primary Production (NPP) of over 70% for some locations. Scenarios through the year 2100 using the MIT Integrated Global Systems Model (IGSM) show potentially greater negative effects in the future. In the worst-case scenario, the current land carbon sink in China could become a carbon source. Reduced crop yields resulting from ozone damage are potentially large but can be mitigated by controlling emissions of ozone precursors. Failure to consider ozone damages to vegetation would by itself raise the costs over the next century of stabilizing atmospheric concentrations of CO2 by 3 to 18%. But, climate policy would also reduce ozone precursor emissions, and ozone, and these additional benefits are estimated to be between 4 and 21% of the cost of the climate policy. Tropospheric ozone effects on terrestrial ecosystems thus produce a surprisingly large feedback in estimating climate policy costs that, heretofore, has not been included in cost estimates.This study was funded by the Biocomplexity Program of the U.S. National Science Foundation (ATM-0120468), the Methods and Models for Integrated Assessment Program of the U.S. National Science Foundation (DEB-9711626) and the Earth Observing System Program of the U.S. National Aeronautics and Space Administration (NAG5-10135). We also received support from the federal and industrial sponsors of the MIT Joint Program on the Science and Policy of Global Change

    The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).The Emissions Prediction and Policy Analysis (EPPA) model is the part of the MIT Integrated Global Systems Model (IGSM) that represents the human systems. EPPA is a recursive-dynamic multi-regional general equilibrium model of the world economy, which is built on the GTAP dataset and additional data for the greenhouse gas and urban gas emissions. It is designed to develop projections of economic growth and anthropogenic emissions of greenhouse related gases and aerosols. The main purpose of this report is to provide documentation of a new version of EPPA, EPPA version 4. In comparison with EPPA3, it includes greater regional and sectoral detail, a wider range of advanced energy supply technologies, improved capability to represent a variety of different and more realistic climate policies, and enhanced treatment of physical stocks and flows of energy, emissions, and land use to facilitate linkage with the earth system components of the IGSM. Reconsideration of important parameters and assumptions led to some revisions in reference projections of GDP and greenhouse gas emissions. In EPPA4 the global economy grows by 12.5 times from 2000 to 2100 (2.5% per year) compared with an increase of 10.7 times (2.4% per year) in EPPA3. This is one of the important revisions that led to an increase in CO2 emissions to 25.7 GtC in 2100, up from 23 GtC in 2100 projected by EPPA3. There is considerable uncertainty in such projections because of uncertainty in various driving forces. To illustrate this uncertainty we consider scenarios where the global GDP grows 0.5% faster (slower) than the reference rate, and these scenarios result in CO2 emissions in 2100 of 34 (17) GtC. A sample greenhouse gas policy scenario that puts the world economy on a path toward stabilization of atmospheric CO2 at 550 ppmv is also simulated to illustrate the response of EPPA4 to a policy constraint.This research was supported by the U.S Department of Energy, U.S. Environmental Protection Agency, U.S. National Science Foundation, U.S. National Aeronautics and Space Administration, U.S. National Oceanographic and Atmospheric Administration; and the Industry and Foundation Sponsors of the MIT Joint Program on the Science and Policy of Global Change: Alstom Power (France), American Electric Power (USA), BP p.l.c. (UK/USA), Chevron Corporation (USA), CONCAWE (Belgium), DaimlerChrysler AG (Germany), Duke Energy (USA), J-Power (Japan), Electric Power Research Institute (USA), Electricité de France, ExxonMobil Corporation (USA), Ford Motor Company (USA), General Motors (USA), Murphy Oil Corporation (USA), Oglethorpe Power Corporation (USA), RWE Power (Germany), Shell Petroleum (Netherlands/UK), Southern Company (USA), Statoil ASA (Norway), Tennessee Valley Authority (USA), Tokyo Electric Power Company (Japan), Total (France), G. Unger Vetlesen Foundation (USA)

    Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Energy Policy 35 (2007): 5370-5383, doi:10.1016/j.enpol.2006.01.040.Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected there can be important economic consequences. We examine the combined effects of changes in climate, increases in carbon dioxide, and changes in tropospheric ozone on crop, pasture, and forest lands and the consequences for the global and regional economies. We examine scenarios where there is limited or little effort to control these substances, and policy scenarios that limit emissions of CO2 and ozone precursors. We find the effects of climate and CO2 to be generally positive, and the effects of ozone to be very detrimental. Unless ozone is strongly controlled damage could offset CO2 and climate benefits. We find that resource allocation among sectors in the economy, and trade among countries, can strongly affect the estimate of economic effect in a country.This research was supported by the US Department of Energy, US Environmental Protection Agency, US National Science Foundation, US National Aeronautics and Space Administration, US National Oceanographic and Atmospheric Administration; and the Industry and Foundation Sponsors of the MIT Joint Program on the Science and Policy of Global Chang
    corecore